$\begin{array}{c} \textbf{Dust Emission via Absorption and Reprocessing, from}\\ \textbf{S} tarlight to IR \end{array}$

 $(\mathbf{DEAR} \ \mathbf{SIR})$

Dust Emission via Absorption and Reprocessing, from Starlight to IR

$(\mathbf{DEAR} \ \mathbf{SIR})$

Kartick C Sarkar, Sheelu Abraham, Tejpreet Kaur, Reju Sam john, Kanti Jotania, Mahadev Pandge

$\begin{array}{c} \textbf{Dust Emission via Absorption and Reproccessing, from}\\ \textbf{S} tarlight to IR \end{array}$

 $(\mathbf{DEAR} \ \mathbf{SIR})$

Star formation

OB star emitting UV

•

Dust Emission via Absorption and Reprocessing, from Starlight to IR

 $(\mathbf{DEAR} \ \mathbf{SIR})$

Star formation

OB star emitting UV

Absorption and re-emission by dust

Dust Emission via Absorption and Reprocessing, from Starlight to IR

 $(\mathbf{DEAR} \ \mathbf{SIR})$

Star formation

OB star emitting UV

Absorption and re-emission by dust

Observer observes IR

Dust Emission via Absorption and Reprocessing, from Starlight to IR

 $(\mathbf{DEAR} \ \mathbf{SIR})$

IR band = $8-1000 \ \mu m$

How we have planned to do it ?

SW = Stellar Wind

Results

$(\mathbf{DEAR} \ \mathbf{SIR})$

Results

 $(\mathbf{DEAR} \ \mathbf{SIR})$

IR conversion efficiency of GRAPHITE dust

Factor of 2 uncertainty, only ?

Wait ...

Uncertainties

$(\mathbf{DEAR} \ \mathbf{SIR})$

Uncertainty ~ 1 order

Stellar synthesis mode Starburst99

FIG. 46.—Absolute bolometric magnitude vs. time. Star formation law: continuous; solid line, $\alpha = 2.35$, $M_{up} = 100 M_{\odot}$; long-dashed line, $\alpha = 3.30$, $M_{up} = 100 M_{\odot}$; short-dashed line, $\alpha = 2.35$, $M_{up} = 30 M_{\odot}$; (a) Z = 0.040; (b) Z = 0.020; (c) Z = 0.008; (d) Z = 0.004; (e) Z = 0.001.

Uncertainties

CR 10pc SW

Background Cosmic Rays CR in magnetic field !

 $(\mathbf{DEAR} \ \mathbf{SIR})$

Cosmic ray heating vs molecule formation !!

SW = Stellar Wind

(DEAR SIR)

- 1) Dust properties are important in observations of SFR region.
- 2) Uncertainty from time varying luminosity is important.
- 3) CR heating has to be properly accounted for.
- 4) We are planning to explore this area.

- 1) Dust properties are important in observations of SFR region.
- 2) Uncertainty from time varying luminosity is important.
- 3) CR heating has to be properly accounted for.
- 4) We are planning to explore this area.

Do not know CLOUDY

==> Excited to learn

- 1) Dust properties are important in observations of SFR region.
- 2) Uncertainty from time varying luminosity is important.
- 3) CR heating has to be properly accounted for.
- 4) We are planning to explore this area.

Do not know CLOUDY Solve a problem partially

==> Excited to learn ==> Even more excited

- 1) Dust properties are important in observations of SFR region.
- 2) Uncertainty from time varying luminosity is important.
- 3) CR heating has to be properly accounted for.
- 4) We are planning to explore this area.

Do not know CLOUDY Solve a problem partially Think more

==> Excited to learn
==> Even more excited
==> Find troubles

1) Dust properties are important in observations of SFR region.

- 2) Uncertainty from time varying luminosity is important.
- 3) CR heating has to be properly accounted for.
- 4) We are planning to explore this area.

Do not know CLOUDY Solve a problem partially Think more Go deep

==> Excited to learn
==> Even more excited
==> Find troubles
==> CONFUSED !!

Our project sky became HAZY in a CLOUDY day!!

Thanks ...