PARSEC

Photodissociation Regions with Shocked zones using CLOUDY

Siddhartha, Katherine, Jose, Mabel, Kumar, Suhail, Rahul, Sathyanarayan

CLOUDY Workshop, IUCAA, Pune, 21-26 September 2015

OUTLINE

- Motivation
- Interaction of star (or star cluster) with ISM
- Model to test our ideas
- Results
- Future plans

MOTIVATION

- To study how shocks impact the physical structure & chemical abundances of the photodissociation region.
- To build a realistic toy model that can be eventually applied to astrophysical regions of interest.

Images courtesy HST

PHOTODISSOCIATION REGIONS

Ionization front

Physics of the Interstellar & Intergalactic Medium, Bruce Draine, 2011

SHOCKS

APPROACH

• Starburst99

<u>Input:</u> Mass of star cluster, age <u>Output:</u> Photon flux, mechanical energy, mass loss rate

• PLUTO

<u>Input:</u> Mass loss rate, mechanical energy <u>Output:</u> Density & temperature profile

• CLOUDY

<u>Input:</u> Density & temperature profile from PLUTO <u>Output:</u> Physical processes, chemical abundances.

PLUTO INPUT PARAMETERS

Mass of star cluster & Age from Starburst99

Parameter	Value
Density	10 ³ particles per c.c.
Mass loss rate	$10^{-3} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
Mechanical luminosity	10 ³⁹ erg s ⁻¹
Mass of star cluster	$10^5 \ M_{\odot}$
Age	10 Myr.

Density & Temperature profile due to the shock

CLOUDY INPUT PARAMETERS

Parameter	Value
Blackbody temperature	10 ⁵ K
Q(H)*	50 photons s ⁻¹
Abundances	ISM
Extent	100 pc
Cosmic ray ionization rate	$2 \times 10^{-16} \text{ s}^{-1}$
	(Galactic background)

+ Density & Temperature profile from PLUTO

* Log of no. of ionising photons emitted by central object per second

TEMPERATURE & DENSITY PROFILES

Constant density model

Shock model

HEATING & COOLING PROCESSES

- Grain photoelectric heating is responsible almost entirely for gas heating in the shock model. For the constant density model, heating due to cosmic rays and photoionization of hydrogen also play an important role.
- Collisional cooling due to hydrogen lines.
- The evolution with depth of individual heating & cooling processes can be studied. We study only the grain photoelectric heating.

LESSER GRAINS IN SHOCK MODEL

INCIDENT & EMITTED CONTINUA

FRACTIONAL ABUNDANCES

Constant density model

Shock model

ABUNDANCES OF ATOMIC SPECIES

Helium fractional abundances & Iron species densities in various ionization states for the shock model

ABUNDANCES OF MOLECULAR SPECIES

- The shock model suppresses H₂ but enhances CO.
- In constant density case, H₂ (0, 0)/H₂: 0.82 , H₂ (0, 1)/H₂: 0.18
- In the shock model, H₂ (0, 0)/H₂: 0.42, H₂ (0, 1)/H₂: 0.68

CH & CH⁺ abundances

SUMMARY

- Shocks push the photodissociation region further away from the central object.
- In the shock model, gas heating is almost entirely through grain photoelectric heating.
- CH⁺/CH ratio is higher in the shock model.

FUTURE POSSIBILITIES

- Study the time variability effects of the shock-induced temperature & density profiles on the features of the photodissociation region.
- Apply the model to star formation regions & gamma ray burst environments.

THANKS