Luminosity, relative intensity

Species ID and line wavelength

Intensity (erg cm⁻² s⁻¹) or luminosity (erg s⁻¹) of line

- depending on case

- Intensity relative to normalization line, default Hβ
 - Change with normalize command

0	3	88.3323m	-5.577	1.5126
0	3	51.8004m	-5.106	4.4704
0	3	4931.23A	-8.339	0.0026
0	3	4958.91A	-4.876	7.5973
0	3	5006.84A	-4.401	22.6702
0	3	2320.95A	-7.193	0.0366
0	3	4363.21A	-6.593	0.1456
0	3	1660.81A	-7.187	0.0371
0	3	1666.15A	-6.720	0.1087
-		40 5050		

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to n_u A_{ul}

Emissivity of two-level atom

$$4\pi j = n_u A_{ul} h \nu \text{ [erg cm}^{-3} \text{ s}^{-1}]$$

$$n_l q_{lu} n_e = n_u (A_{ul} + q_{ul} n_e)$$

$$\frac{n_u}{n_l} = \frac{q_{lu}n_e}{A_{ul} + q_{ul}n_e}$$

 $n_l + n_u = n_{total}$

u	 		
1			

Critical density n_{crit}

•
$$A_{ul} = q_{ul} n_{crit}$$
, so $n_{crit} = \frac{A_{ul}}{q_{ul}}$

• Low density limit,
$$n_e \ll n_{crit}$$

• $4\pi j = n_e n_l q_{ul} h \nu \propto n^2$

• High density limit,
$$n_e \gg n_{crit}$$

• $4\pi j = n_l \frac{q_{lu}}{q_{ul}} A_{ul} h v \propto n$

Table 3.15

Critical densities for collisional deexcitation

Ion	Level	$n_e ({\rm cm}^{-3})$	Ion	Level	$n_e (\mathrm{cm}^{-3})$
CII	${}^{2}P_{3/2}^{o}$	5.0×10^{1}	O III	${}^{1}D_{2}$	6.8×10^{5}
C III	${}^{2}P^{o}_{3/2}$ ${}^{3}P^{o}_{2}$	5.1×10^{5}	O III	${}^{3}P_{2}$	3.6×10^{3}
N II	${}^{1}D_{2}^{2}$	6.6×10^{4}	O III	${}^{3}P_{1}^{2}$	5.1×10^{2}
N II	${}^{3}P_{2}^{2}$	3.1×10^{2}	Ne II	${}^{2}P_{1/2}^{o}$	7.1×10^{5}
N II	$^{3}P_{1}$	8.0×10^{1}	Ne III	${}^{1}D_{2}^{1/2}$	9.5×10^{6}
N III	${}^{2}P_{3/2}^{o}$	1.5×10^{3}	Ne III	${}^{3}P_{0}^{2}$	3.1×10^{4}
N IV	⁵ P ₀	1.1×10^{6}	Ne III	${}^{3}P_{1}$	2.1×10^{5}
O II	${}^{2}D_{3/2}^{2}$	1.5×10^{4}	Ne V	${}^{1}D_{2}$	1.3×10^{7}
O II	${}^{2}D_{5/2}^{o}$	3.4×10^{3}	Ne V	${}^{3}P_{2}^{2}$	3.5×10^{4}
S II	${}^{2}D_{3/2}^{o}$	5.4×10^{4}	Ne V	${}^{3}P_{1}$	6.2×10^{3}
S II	${}^{2}D_{5/2}^{o}$	1.6×10^4			

NOTE: All values are calculated for T = 10,000 K.

Luminosity of a line

Below critical density

- emissivity (emission per unit volume) is proportional to the electron-ion collision rate $j \propto n_{ion} n_e \propto n^2$,
- Luminosity proportional to emission measure, n^2V ; AG3 eqn 5.12

Above critical density

- Atom is in LTE so emissivity is proportional to ion density n_{ion}
- Luminosity proportional to mass, $n_{ion}V$

Rutten text

Radiative Transfer in Stellar Atmospheres

Rutten, R. J.

http://adsabs.harvard.edu/abs/2003rtsa.boo k.....R

Vary density over extreme range

- Plot emissivity vs density over wide range to see how emissivity changes
- Recombination line, [O III] forbidden lines
- 🔷 varyn.in

♦ $H^+ + e \rightarrow H^{0*} \rightarrow H^0 + photons$

- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in low density limit
- ◆ Emissivity goes as n² for n < 10²⁰ cm⁻³
- Case B predictions

H I, He I, He II are the strongest in UV/ Opt/ IR
Second row (C,N, O, Ne) & Fe in X-ray

Forbidden lines

• [O III]

- $O^{++} + e \rightarrow O^{++*} + e \rightarrow O^{++} + e + photons$ $-n_e n(O^{++}) q_{ul}$
- Critical densities of many forbidden lines n ~ 1e3 - 1e5 cm⁻³, so they can be in low density limit or high density limit
- Emissivity goes as n² or n

Compute spectrum of clouds with two very different densities

♦ Hden = 4

♦ Hden = 14

- How will emissivity (emission per unit volume) from these cloud compare?
- How can we "trick" the model into having roughly the same emission?

Density indicators

AGN3 Fig 5.7

Figure 5.8

Calculated variation of [O II] (*solid line*) and [S II] (*dashed line*) intensity ratios as functions of n_e at T = 10,000 K. At other temperatures the plotted curves are very nearly correct if the horizontal scale is taken to be $n_e(10^4/T)^{1/2}$.