4
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4.1 Introduction

The radiation emitted by each element of volume in a gaseous nebula depends upon
the abundances of the elements, determined by the previous evolutionary history of
the gas, and on the local ionization, density, and temperature, determined by the
radiation field and the abundances as described in the preceding two chapters. The
most prominent spectral features are the emission lines, and many of these are the
collisionally excited lines described in the preceding chapter on thermal equilibrium.
The formalism developed there to calculate the cooling rate, and thus the thermal
equilibrium, may be taken over unchanged to calculate the strength of these lines. If
we could observe all the lines in the entire spectral region from the extreme ultraviolet
to the far infrared, we could measure directly the cooling rate at each observed point
in the nebula. Many of the most important lines in the cooling, for instance [O II]
AA3726, 3729 and [O II] AA14959, 5007, are in the optical region and are easily
measured. Other lines that are also important in the cooling, such as [O III] 2 p? 3 P—
2p? 3P, A88.4 um, and 3P,—3P,A51.8um, are in the far infrared region, while still
others, such as C IV AA1548, 1551, are in the vacuum ultraviolet.

For historical reasons, astronomers tend to refer to the chief emission lines
of gaseous nebulae as forbidden lines. Actually, it is better to think of the bulk
of the lines as collisionally excited lines, which arise from levels within a few
volts of the ground level, and which therefore can be excited by collisions with
thermal electrons. In fact, in the ordinary optical region all these collisionally ex-
cited lines are forbidden lines, because in the abundant ions all the excited lev-
els within a few volts of the ground level arise from the same electron configura-
tion as the ground level itself, and thus radiative transitions are forbidden by the
parity selection rule. However, at wavelengths:just slightly below the ultraviolet
cutoff of the Earth’s atmosphere, collisionally excited lines begin to appear that
are not forbidden lines. Among others, many nebulae have strong permitted lines
of Mg II 35 2§-3p 2P° AA2796, 2803, C IV 2s 25-2p 2P°A11548, 1551, and
SiIV 3s 25-3p 2P° A11394, 1403.

In addition to the collisionally excited lines, the recombination lines of H I,
He I, and He II are characteristic features of the spectra of gaseous nebulae. They are
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emitted by atoms undergoing radiative transitions in cascading down to the ground
level following recombinations to excited levels. In the remainder of this chapter,
these recombination emission processes will be discussed in more detail. Finally, the
continuum-emission processes, which are the bound—free and free—free analogues
of the bound-bound transitions emitted in the recombination-line spectrum, will be
examined.

4.2 Optical Recombination Lines

The recombination-line spectrum of HIis emitted by H atoms that have been formed
by captures of electrons into excited levels and that are cascading by downward
radiative transitions to the ground level. In the limit of very low density, the only
processes that need be considered are captures and downward-radiative transitions.
Thus the equation of statistical equilibrium for any level nL. may be written

[e%9) n—1
npneyr (T + D D nypiAypiar =mur Y Y Anparis- @.1)

n’>n L’ n’=1 L"

Note in general A,/ prpn 70 only if L' = L" & 1.

It is convenient to express the population in terms of the dimensionless factors
b,; that measure the deviation from thermodynamic equilibrium at the local T, n,,
and n,,. In thermodynamic equilibrium the Saha equation o

phe (27[ka
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and the Boltzmann equation
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apply. The factor 2L + 1 is the ratio of statistical weights of the nL and 1S
levels. Then the population in the level nL in thermodynamic equilibrium may be
written

-
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is the ionization potential of the level nL. Therefore, in general, the population may
be written

2

2nmkT
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and b,,; = 1in thermodynamic equilibrium.
Substituting this expression in (4.1),
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it can be seen that the b,,; factors are independent of density as long as recombination
and downward-radiative transitions are the only relevant processes. Furthermore, it
can be seen that the Equations (4.7) can be solved by a systematic procedure working
downward in n, for if the b,,; are known for all n > ng, then the n Equations (4.7),
with L =0, 1, ..., n — 1forn =ng_, each contain a single unknown b,; and can
be solved immediately, and so on successively downward.

It is convenient to express the solutions in terms of the cascade matrix
C(nL, n'L"), which is the probability that population of nL is followed by a tran-
sition to n’L’ via all possible cascade routes. The cascade matrix can be generated
directly from the probability matrix P(nL, n’L’), which gives the probability that
population of the level nL is followed by a direct radiative transition to n'L’,

A L, /Ll
Py = 4.8)
Z ZAYEL,IL"L”

n//:1 L//

which is zero unless L' = L + 1.
Hence, forn' =n — 1,

Corn—1r = Papn—110%

forn' =n—2,
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L/=L'+1
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and forn’ =n — 3,

CnL,n73L’ = uL,n-3L'

+ Z [Cr 10 Pt n—31r + Corn—a17 Paarin—3v’)
L/=L'#1

so that if we define

CoL Ly =8p17s “4.9)
then in general
nL nlLI = Z Z CnL n//L//P //L// nIL/ (4.10)
>n/ L'=L'+1

The solutions of the equilibrium Equations (4.1) may be immediately written
down, for the population of any level nL is fixed by the balance between recombina-
tions to all levels n’ > n that lead by cascades to nL and downward radiative transitions
from nL:

oo n'—1
e D Zan,L,(T) ColsnL =ML Z > A @11
n'=n L'= n"=1L"=L+1

Itis convenient to express the results in this form because once the cascade matrix
has been calculated, it can be used to find the b,,; factors or the populations n,,; at any
temperature, or even for cases in which the population occurs by other non-radiative
processes, such as collisional excitation from the ground level or from an excited level.
To carry out the solutions, it can be seen from (4.11) that it is necessary to fit series in
n,n',L,and L' to Cyy, vy and oy, (T), and extrapolate these series as n — 0o. Once
the populations n,,; have been found, it is simple to calculate the emission coefficient
in each line:

” h”’”" Z > A 4.12)

L=0L'=L*1

The situation we have been considering is commonly called Case A in the
theory of recombination-line radiation, and assumes that all line photons emitted in
the nebula escape without absorption and therefore without causing further upward
transitions. Case A is thus a good approximation for gaseous nebulae that are optically
thin in all H I resonance lines, but in fact such nebulae can contain only a relatively
small amount of gas and are mostly too faint to be easily observed.
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Nebulae that contain observable amounts of gas generally have quite large optical
depths in the Lyman resonance lines of H I. This can be seen from the equation for
the central line-absorption cross section,

3N, [ my \ V2 ,
ao@”)=¢(m) Ayp,1s [em], (4.13)

where A,,; is the wavelength of the line. Thus, at a typical temperature 7 = 10,000 K,
the optical depth in L is about 10* times the optical depth at the Lyman limit v = v, of
the ionizing continuum, and an ionization-bounded nebula with 7, ~ 1 therefore has
7(La) ~ 104, t(LB) &~ 103, 7(L8) ~ 10%, and 7(L18) ~ 10. In each scattering there
is a finite probability that the Lyman-line photon will be converted to a lower-series
photon plus a lower member of the Lyman series. Thus, for instance, each time an
L photon is absorbed by an H atom, raising it to the 3 2P level, the probability that
this photon is scattered is P3; 19 = 0.882, while the probability that it is converted to
Ha is P31 59 = 0.118, so after nine scatterings an average L. photon is converted to Ha
(plus two photons in the 2 2S — 125 continuum) and cannot escape from the nebula.
Likewise, an average Ly photon is transformed, after a relatively few scatterings,
either into a Pa photon plus an He photon plus an Lee photon, or into an HB photon
plus two photons in the 2 25125 continuum. Thus, for these large optical depths, a
better approximation than Case A is the opposite assumption that every Lyman-line
photon is scattered many times and is converted (if n > 3) into lower-series photons
plus either Lo or two-continuum photons. This large optical depth approximation is
called Case B, and is more accurate than Case A for most nebulae. However, it is
clear that the real situation is intermediate, and is similar to Case B for the lower
Lyman lines, but progresses continuously to a situation nearer Case A as n — 0o and
7(Ln) > 1

Under Case B conditions, any photon emitted in an n 2po 5 128 transition is
immediately absorbed nearby in the nebula, thus populating the n> P level in another
atom. Hence, in Case B, the downward radiative transitions to 1 2S are simply omitted
from consideration, and the sums in the equilibrium Equations (4.1), (4.7), (4.8), and
(4.11) are terminated at n” = ny = 2 instead of at ny = 1 as in Case A. The detailed
transition between Cases A and B will be discussed in Section 4.5.

Selected numerical results from the recombination spectrum of H I are listed
in Tables 4.1 and 4.2 for Cases A and B, respectively. Note that, in addition to
the emission coefficient js; = jyg and the relative intensities of the other lines,
it is also sometimes convenient to use the effective recombination coefficient, de-
fined by :

47[] ’
nyn ozeff E E nr A g = —20 4.14
—~ nLnL ,n'L hv'm, ( )
=0 L'=L=+1
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Table 4.1
H I recombination lines (Case A, low-density limit)

T
2,500 K 5,000 K 10,000 K 20,000 K

4mjug/nen, 270 x 1072 1.54 x 1072 8.30 x 10726 421 x 10726
(erg cm? s7h
ag‘{, (em3s™Y) 6.61 x 10714 378 x 10714 2.04 x 10714 103 x 10714

Balmer-line intensities relative to HB
Jualjup 3.42 3.10 2.86 2.69
Juy/iup 0.439 0.458 0.470 0.485
Jus/Jup 0.237 0.250 0.262 0.271
JuelJup 0.143 0.153 0.159 0.167
Jus/Jug 0.0957 0.102 0.107 0.112
Juoljup 0.0671 0.0717 0.0748 0.0785
Juto/iug 0.0488 0.0522 0.0544 0.0571
Juis/iup 0.0144 0.0155 0.0161 0.0169
Jeo/Jug 0.0061 0.0065 0.0068 0.0071

Lyman-line intensities relative to Hf
JLaliup 33.0 32.5 32.7 34.0

Paschen-line intensities relative to HB
Jpaling 0.684 0.562 0.466 0.394
Jppliup 0.267 0.241 0.216 0.196
Jpyling 0.134 0.126 0.118 0.110
Jps/iug 0.0508 0.0497 0.0474 0.0452
Jr10/iup 0.0258 0.0251 0.0239 0.0228
Jp1s/ing 0.00750 0.00721 ‘ 0.00691 0.00669
Tpaoliug 0.00310 0.00300 0.00290 0.00280

For hydrogen-like ions of nuclear -charge Z, all the transition probabilities
Ay 1 are proportional to Z*, sothe P,y s, and C,p, vy matrices are independent

of Z. The recombination coefficients o, scale as

a(Z, T)=Z a, (1, T/Z?);

the effective recombination coefficients scale in this same way, and since the energies

hv,,, scale as

Van(Z) = Z 20y (D),
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Table 4.2
H I recombination lines (Case B, low-density limit)

T
2,500 K 5,000 K 10,000 K 20,000 K
47 jup/nen,, 3.72 x 1072 220 x 107% 124 x 1075 6.62 x 10726
(erg cm? )
of (3 1 —14 1014 14 _
oygg (em® s 9.07 x 10 5.37 x 10 3.03 x 107! 1.62 x 10714
Balmer-line intensities relative to HB
ol up 3.30 3.05 2.87 2.76
Jylinp 0.444 0.451 0.466 0.474
Jus/Jup 0.241 0.249 0.256 0.262
Jue/Jnp 0.147 0.153 0.158 0.162
Jus/Juip 0.0975 0.101 0.105 0.107
Juoljup 0.0679 0.0706 0.0730 0.0744
Ju0/jup 0.0491 0.0512 0.0529 0.0538
Juis/Jup 0.0142 0.0149 0.0154 0.0156
Jmo/jup 0.0059 0.0062 0.0064 0.0065
Paschen-line intensities relative to HS
Jpaliug 0.528 0.427 0.352 0.293
Jrpling 0.210 0.187 0.165 0.146
Jipyling 0.1060 0.0991 0.0906 0.0820
Jpeling 0.0410 0.0392 0.0368 0.0343
Jp10/ing 0.0207 0.0199 0.0185 0.0172
Jpis/iug 0.00589 0.00571 0.00530 0.00501
Jp20/ing 0.00240 0.00240 0.00220 0.00210
Brackett-line intensities relative to HB
Jgraling 0.1447 0.1091 0.0834 0.0640
Jsrgling 0.0709 0.0578 0.0471 0.0380
Jsryliug 0.0387 0.0332 0.0281 0.0237
JrslTnp 0.0248 0.0216 0.0186 0.0157
Jari0/Jug 0.01193 0.01065 0.00920 0.00796
JBris/iug 0.00317 0.00295 -~ 0.00263 0.00231
JBraoliug 0.00127 - 0.00124 0.00109 0.00097
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the emission coefficient is
G (Z, TY = Z3 (1, T/ Z?). (4.15)

Thus the calculations for HI at a temperature T can also be applied to He Il at 7/ = 4T .
In Table 4.3 some of the main features of the He II recombination line spectrum are
listed for Case B, with the strongest line in the optical spectrum, A4686 (n =4 — 3),
as the reference line. Note that the Fowler series (n — 3) except for 14686 and
13203, and the entire “Balmer” series (n — 2) are in the vacuum ultraviolet spectral
region.

Next let us return to the H I recombination lines and examine the effects
of collisional transitions at finite nebular densities. The largest collisional cross
sections involving the excited levels of H are for transitions nL — nL & 1 which
have essentially zero energy difference. Collisions with both electrons and protons
can cause these angular-momentum-changing transitions, but because of the small
energy difference, protons are more effective than electrons; for instance, repre-
sentative values of the mean cross sections for thermal protons at T ~ 10,000 K
are 6(2 28 > 2 2P ~3x 1070 cm?, 0(10 2L — 10 2L £ 1) ~ 4 x 1077 cm?,
and (20 2L - 20 2L £ )~ 6 x 1079 cm?2. (Both of the latter are evaluated for
L ~n/2.) These collisional transitions must then be included in the equilibrium
equations, which are modified from (4.1) to read

00
npneoy(T) + Z Z Ny AwpnL + Z Rw LM pdnL/ ,nL

n’>n L'=L+1 L'=L+1
(4.16)
n—1
=nur Z Z App iy + Z RpdnL,nL”
n'=ny L"=L+1 L'=L+1

where ny = 1 or 2 for Cases A and B, respectively, and

o0
nrwr =dnrwi(T) = f uo(nL — n'L)) f(u) du [em® s~ (4.17)
0

is the collisional transition probability per proton per unit volume. For sufficiently
large proton densities, the collisional terms dominate, and because of the principle of
detailed balancing, they tend to set up a thermodynamic equilibrium distribution of the
various L levels within each r; that is, they tend to make the populations proportional
to the statistical weights,

My @ QLA
nnLl C()nL/ (2Ll + 1)

Table 4.3
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He II recombination lines (Case B, low-density limit)

5,000 K 10,000 K 20,000 K 40,000 K
A7 i 4686/ PePiget+ 3.14 x 1024 1.58 x 10724 7.54 x 10725 3.48 x 1072
(erg cm® s
ol (em? s~ 740x 10713 372x 1071 177x 10713 820 x 1074
“Balmer”-line (n — 2) intensities relative to A4686
J32/Jra686 5.60 6.25 7.14 8.15
Jar/Jra686 1.54 1.89 2.34 2.84
Jsa/Jraes6 0.66 0.84 1.06 1.32
J1a/Jra686 0.22 0.28 0.36 0.45
J10.2/Jr4686 0.07 0.09 0.12 0.15
Fowler-line intensities (n — 3) relative to A4686
J53/Jra686 0.355 0.398 0.438 0.469
Je3/Jrasss 0.173 0.201 0.232 0.257
Jg3/Jra686 0.065 0.078 0.092 0.104
J10,3/jr4686 0.033 0.039 0.047 0.052
Pickering-line (n — 4) intensities relative to A4686
Jsa/ir4686 0.295 0.274 0.256 0.237
Jea/Jra636 0.131 0.134 0.135 0.134
JralJra686 0.0678 0.0734 0.0779 0.0799
JsalJra636 0.0452 0.0469 0.0506 0.0527
Joa/Jr4686 0.0280 0.0315 0.0345 0.0364
Ji0,4/ir4686 0.0198 0.0226 0.0249 0.0262
J12.4/ Jra686 0.0106 0.0124 0.0139 0.0149
J1s,4/ Jra686 0.0050 0.0060 0.0069 0.0075
J20,4/ 4636 0.0020 0.0024 0.0029 0.0031
Pfund-line (n — 5) intensities relative to A4686
Jes/Jra6s6 0.1081 0.0955 0.0856 0.0758
J1s5/ir4686 0.0547 0.0539 0.0513 0.0474
Jgs/ir4686 0.0320 0.0331 0.0327 0.0311
J10,5/Jra686 0.0144 0.0156 0.0160 0.0157
J1s.5/Jr4686 0.00320 0.00390 0.00430 0.00450
J20,5/Jr4686 0.00120 0.00150 0.00170 0.00190
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or

_eL+h,

e (4.18)

L)

which is equivalent to b,; = b,,, independent of L, where

n—1
ny = Z uL
L=0

is the total population in the levels with the same principal quantum number #. Since
the cross sections 0,1 _, ,1 +1 increase with increasing 7, but the transition probabilities
A, 1 w1+ decrease, Equations (4.18) become increasingly good approximations with
increasing 7, and there is therefore (for any density and temperature) a level n.;, (for
coupled angular momentum or “well L-mixed”) above which they apply. For H at
T ~ 10,000 K, this level is approximately n,;, ~ 15 at n, ~ 10* cm™3, n, ~ 30 at
n, = 102 cm™3 and n,; ~ 45 at n,~1 cm ™3,

Exactly the same type of effect occurs in the He II spectrum, because it also
has the property that all the levels nL with the same # are degenerate. The He II
lines are emitted in the HT, Het™ zone of a nebula, so both protons and He™ ions
(thermal « particles) can cause collisional, angular momentum-changing transitions
in excited levels of He™. The cross sections o, _,,7.4; actually are larger for the
He' ions than for the HT ions, and both of them must be taken into account in the
Het™ region. The principal quantum numbers above which (4.18) applies for He II

at T ~ 10,000 K are approximately n,, ~ 22 for n, ~ 10* cm™3, and n,, ~ 32 for

n,~ 102 cm 3.

After the angular-momentum-changing collisions at fixed 7, the next largest col-
lisional transition rates occur for collisions in which n changes by +1, and of these
the strongest are those for which L also changes by +1. For this type of transi-
tion, collisions with electrons are more effective than collisions with protons, and
representative cross sections for thermal electrons at 7 = 10,000 K are of order
o(nL — n=+ An, L £ 1) ~ 10716 cm?. The effects of these collisions can be incor-
porated into the equilibrium equations by a straightforward generalization of (4.16).
Indeed, since the cross sections for collisions o (nL. — n &= An, L £ 1) decrease with
increasing An (but not too rapidly), collisions with An =1, 2, 3, . . . must all be in-
cluded. The computational work required to set up and solve the equilibrium equations
numerically becomes increasingly complicated and lengthy, but is straightforward in
principle. It is clear that the collisions tend to couple levels with AL = +1 and small
An, and that this coupling increases with increasing n, (and n,) and with increas-
ing n. With collisions taken into account, the b,; factors and the resulting emission
coefficients are no longer independent of density.

Some calculated results for H I, including these collisional effects, are given in
Table 4.4, which shows that the density dependence is rather small. Therefore this
table, together with Table 4.2, which applies in the limit z, — 0, enables the H-line
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emission coefficients to be evaluated over a wide range of densities and temperatures.
Similarly, Table 4.5 shows calculated results for the He II recombination spectrum at
finite densities and may be used in conjunction with Table 4.3, which applies in the
same limit.

Exactly the same formalism can be applied to He I recombination lines, ap-
proximately treating the singlet and triplets as separate systems since all transition
probabilities between them involving S, P, and D levels are quite small. The He 1
triplets always follow Case B, because downward radiative transitions to 1 1S essen-

“tially do not occur. For the singlets, Case B is ordinarily a better approximation than

Case A for observed nebulae, though the optical depths are lower for all lines than
for the corresponding lines of H by a factor of approximately the abundance ratio.
An extra complication is that He I 1 1.§—n 1P line photons can photoionize HP, and
thus may be destroyed before they are converted into lower-energy photons. Calcu-
lated (Case B) results for the strongest He I lines are summarized in Table 4.6, with
14471 (2 3P°—43D) as the reference line. Note that only H itself and the ions of its
isoelectronic sequence have energy levels with the same » but different L degenerate,
so for He I, Table 4.6 lists the j (n@StDL, n/@S+D Ly rather than j(n, n'), as for H.
The radiative-transfer effects on the He I triplets, discussed in Section 4.6, and the
collisional-excitation effects, discussed in Section 4.8, are not included in this table.

4.3 Optical Continuum Radiation

In addition to the line radiation emitted in the bound-bound transitions previously
described, recombination processes also lead to the emission of rather weak contin-
uum radiation in free—bound and free—free transitions. Because hydrogen is the most
abundant element, the H I continuum, emitted in the recombination of protons with
electrons, is the strongest, and the He II continuum may also be significant if He is
mostly doubly ionized, but the He I continuum is always weaker. In the ordinary opti-
cal region the free-bound continua are stronger, but in the infrared and radio regions
the free—free continuum dominates. In addition, there is a continuum resulting from
the two-photon decay of the 2 2S level of H, which is populated by recombinations
and subsequent downward cascading. In this section we will examine each of these
sources of continuous radiation.

The H I free—bound continuum radiation at frequency v results from recombina-
tions of free electrons with velocity u to levels with principal quantum number n > ny,
and ionization potential X, where

hv=-u*+X, (4.19)
and

hy > X, = —2 (4.20)
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Table 4.6
He I recombination lines (Case B)

T
5,000 K 10,000 K 20,000 K
n, (cm™3) 10? 10* 10? 104 10° 10? 10*

AT jrgq71/ NPyt
(1075 erg cm’ s71) 1.15 1.18 0.612 0647 0.681 0301 0408

off

Qpam1

104 cm®s™h 2.60 2.67 1.39 1.47 1.54 0683 0925
Triplet lines relative to A4471

Jrss76/Jraatt 2.93 2.92 2.67 2.90 2.97 2.62 3.62

Jrd026/ rda71 0.460 0.461 0.476 0469 0467 0.484 0.437

Ja7065/ Jraa71 0.373 0.403 0.489 0.912 1.05 0.716 1.67

Jr10830/Fr4471 4.35 11.8 541 29.1 374 7.78 46.2

Jr3880/Fraa71 1.96 1.97 2.31 .2.60 2.70 2.76 3.27

Jr3187/Jraa71 0.758 0.760 0917 0.947 0.956 1.14 1.13
Singlet lines relative to A4471

Jre678/ Jraa71 0.841 0.838 0.756- 0.768 0.768 0.721 0.756

Jra922/ Jaaarn 0.273 0.274 0.270 0.266 0.265 0.266 0.239

Jaso16/Jra471 0.510 0.513 0.578 0.589 0.593 0.663 0.627

Ja3965/ Jrad71 0.199 0.200 0.230 0.228 0.227 0.268 0.237

so its emission coefficient per unit frequency interval per unit solid angle per unit time
per unit volume is therefore

oo n—1

1 du
Jo=npne Y > uo, (H, u) f () hv——. (4.21)
4 nny L=0 v

The recombination cross sections o,,; (H?, u) can be calculated from the photoion-
ization cross sections a,(H, nL) by the Milne relation, as shown in Appendix 2.

The free—free (or bremsstrahlung) continuum emitted by free electrons acceler-
ated in Coulomb collisions with positive ions (which are mostly HY, Het, or Hett
in nebulae) of charge Z has an emission coefficient

j, = —n_,n
v +te 3T

1 32Z7%*h (zrhvo
47 3m2c3

12
) exp(—hv/kT) g ;¢ (T, Z, v), (4.22)

Table 4.7

H I continuous-emission coefficient (in 10~2 erg cm?® s~1) times frequency vy, (H?, T)
g q Yy

T
A (um) 5,000 K 10,000 K 15,000 K 20,000 K
10 0.310 0.262 0.238 0.223
3.0 1.03 0.772 0.673 0.618
1.0 1.87 1.72 1.57 , 1.46
0.82044 1.23 1.54 1.55 1.52
0.8204— 8.70 4.18 2.99 2.45
0.700 5.71 3.69 2.90 2.49
0.5696 2.81 2.89 2.65 2.44
0.45 0.950 1.90 2.17 2.23
0.400 0.485 1.45 1.88 2.07
0.3646+ 0.268 1.13 1.65 1.91
0.3646— 55.0 20.5 12.2 8.76
0.3122 213 13.8 9.82 7.72
0.260 3.39 6.17 6.21 5.79
0.150 0.0040 0.196 0.758 1.38
0.10 — 0.0025 ; 0.0479 0.194

where g (T, Z, v) is a Gaunt factor. Thus the emission coefficient for the H I
recombination continuum, including both bound—free and free—free contributions,
may be written

, 1
JyHTD) = Enpneyv(H", T). (4.23)

Rather than tabulating and plotting this quantity itself, it is more convenient, especially
for visualization, to use the quantity vj,(H I), which is proportional to the emission
coefficient per unit logarithmic frequency interval d In v = dv/v. Numerical values
for vy,, as calculated from Equations (4.21) and (4.22), are given in Table 4.7.
Likewise, the contributions to the continuum-emission coefficient from He I and He 11
may be written

. 1 .
jyHel) = En(He*’)neyu(He"F, T,
(4.24)
, 1
j,(He II) = En(He++)neyv(He++, T),

and numerical values of vy, are listed in Tables 4.8 and 4.9. The calculation for He IT
is exactly analogous to that for HI, while for He I the only complication is that there
is no L degeneracy and Equations (4.19), (4.20), and (4.21) must be appropriately
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Table 4.8
He I continuous-emission coefficient (in 1025 erg cm® s~!) times frequency vy, (He, T)

T

A (pm) 5,000 K 10,000 K 15,000 K 20,000 K
10 0.310 0.262 0.238 0.223
3 1.02 0.77 © 067 0.62
1 1.90 1.72 1.57 1.46
0.8268+ 1.27 1.55 1.55 1.51
0.8268— 2.02 1.81 1.70 1.61
0.8197+ 2.08 1.84 1.71 1.62
0.8197— 5.61 3.09 2.39 2.06
0.7849+ 4.99 297 2.37 2.06
0.7849— 7.91 4.01 2.93 243
0.7440+ 6.86 3.83 2.89 2.44
0.7440— 7.06 3.90 2.93 247
0.6636+ 5.01 3.48 2.82 246
0.6636— 5.54 3.67 292 2.53
0.5696 3.23 3.03 2.70 247
0.45 1.10 1.99 221 225
04 0.56 1.51 191 2.07
0.368+ 0.33 1.20 1.69 1.93
0.368- 9.9 4.59 3.53 3.12
0.3433+ 6.43 391 3.25 2.99
0.3433— 51.8 20.0 12.0 8.7
0.3122+ 25.1 14.5 9.90 7.7
0.3122— 29.2 159 . 108 8.2
0.260+ 5.54 7.51 6.87 6.12
0.260— 21.1 13.0 9.9 8.06
0.15 0.020 0.453 1.244 1.938
0.1 0.013 0.012 0.084 0.275

generalized. Figure 4.1 shows these calculated values vy, and also shows the large
discontinuities at the ionization potentials of the various excited levels. Note that for
a typical He abundance of approximately 10 percent of that of H, if the He is mostly
doubly ionized, then the He 11 contribution to the continuum is roughly comparable
to that of H I, but if the He is mostly singly ionized, the He I contribution to the
continuum is only about 10 percent of the H I contribution.

An additional important source of continuum emission in nebulae is the two-
photon decay of the 2 25 level of H I, which is populated by direct recombinations
and by cascades following recombinations to higher levels. The transition probability
for this two-photon decay is Ay 2g 125 = 8.23 s~1, and the sum of the energies of the
two photons is AV’ + hv” = hvy, = hv (La) = (3/4) hv,. The probability distribution
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Table 4.9

He II continuous-emission coefficient times frequency (in 10~ erg cm’ s 1) va(He+, T)

T

A (um) 5,000 K 10,000 K 15,000 K 20,000 K
10 - 1.00 0.897 0.826 0.777
3 291 2.45 2.23 2.09
1 11.5 7.96 6.61 5.89
0.820+ 7.64 7.16 6.57 6.14
0.820— 23.0 12.6 9.53 8.07
0.700 15.0 11.0 9.20 8.16
0.56944 7.30 8.57 8.33 7.96
0.5694— 453 22.0 15.6 12.7
0.450 15.3 14.5 12.9 11.7
0.400 7.82 11.0 11.2 10.8
0.3644+ 4.34 8.62 9.76 9.99
0.3644— 119.4 493 31.9 244
0.312 37.8 30.2 244 20.8
0.260 7.34 14.7 16.1 15.9
0.150 3.98 18.7 254 272
0.100 0.174 0.395 1.77 3.99

of the emitted photons is therefore symmetric around the frequency (1/2)v;, =
1.23 x 105 s71, corresponding to A = 2431 A. The emission coefficient in this two-
photon continuum may be written

1
Jv(2q) = ' 2543 25,1252V P (), (4.25)

where P(y)dy is the normalized probability per decay that one photon is emitted in
the range of frequencies y vi5 to (y + dy)vy,.

"To express this two-photon continuum-emission coefficient in terms of the proton
and electron density, it is necessary to calculate the equilibrium population of n(2 25)
in terms of these quantities. In sufficiently low-density nebulae, two-photon decay i is
the only mechanism that depopulates 2 25, and the equilibrium is given by

o MO, T) =ny 2 Ay 5,175 (4.26)
where (x;];}; is the effective recombination coefficient for populating 2 25 by direct

recombinations and by recombinations to higher levels followed by cascades to 2 25.
However, at finite densities, angular-momentum-changing collisions of protons and
electrons with H atoms in the 2 2 level shift the atoms to 2 % P° and thus remove them
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Figure 4.1

Frequency variation of continuous-emission coefficient y,(HP, solid line), y, (He®, thin solid
line), y, (He*, dashed line), and y, (2hv, smooth solid line) in the low-density limit n, — 0,
all at T = 10,000 K.

from 2 2S. The protons are more effective than electrons, whose effects, however, are
not completely negligible, as can be seen from the values of the collisional transition
rates per 2 25 atom, in Table 4.10. With these collisional processes taken into account,
the equilibrium population in 2 25 is given by

npnea;fgs(HO, T)=
(4.27)
ny2g <A2 28,128 + n’pq§25,2 2po + nqu 28,2 2pa) :

-

From Table 4.10, it can be seen that collisional deexcitation of 2 2S via 2 2P is more
important than two-photon decay for n, > 10* cm™3; so at densities approaching
this value, Equation (4.27) must be used instead of Equation (4.26). Thus combining
Equations (4.25) and (4.27), we can write the emission coefficient as

1
Jv(q) = Enpne%,(ZfI) (4.28)
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Table 4.10
Collisional transition rate coefficients (in cm® s~1) for HI2 25, 22p°

T
10,000 K 20,000 K
Protons
432 5 2po 2.51x 107 2.08 x 107
’ 172
P —4 —4
925, 2pg, 2.23 x 10 2.19 x 10
Electrons
e —4 —4
4526 52po 0.22 x 10 0.17 x 10
’ 1/2
—4 —4
q§ 2522p3, 0.35x 10 0.27 x 10
Total
4y2552po 531 x 107# 4.71 x 1074

Table 4.11
Effective recombination coefficient (in cm? s=1) to H (2 28)

T (K) off

%2
5,000 1.38 x 10713
10,000 0.838 x 10~13
15,000 0.625 x 10713
20,000 0.506 x 10~13

where

azszcs(HOa T)g,

w(29) = - , (4.29)
I+ Npdy2552p tMedy25,2p

Ap2g,125
The quantity 7y is tabulated in Table 4.11 and vg, is tabulated in Table 4.12. The two-
photon continuum is also plotted in Figure 4.1 for T = 10,000 K and in the low-density
limitn, ~n, K 10* cm™3. It can be seen that this continuum is quite significant in
comparison with the H I continua, particularly just above the Balmer limit at A3646 A.
Note that although the two-photon continuum is symmetric about vy, /2 if expressed
in photons per unit frequency interval, itis not symmetric about 12431 if expressed per
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Table 4.12
Spectral distribution of H I two-photon emission (in 1012 erg) vg,

A A) v(10' Hz) Ve,
o0 0.0 0.0
24,313 1.23 0.0373
12,157 2.47 0.242
8104 3.70 0.679
6078 4.93 1.37
4863 6.17 2.33
4052 7.40 3.55
3473 8.64 5.01
3039 9.87 6.69
2701 11.10 8.59
2431 12.34 10.6

unit wavelength interval, nor is either symmetric if expressed in energy units rather
than photons. From Equation (4.25), if v > v5/2,

v
8y = ;gv’,

/! _—
where V' = vy — V.

4.4 Radio-Frequency Continuum and Line Radiation

The line and continuous spectra described in Sections 4.2 and 4.3 extend to arbitrarily
low frequency, and in fact give rise to observable features in the radio-frequency spec-
trum region. Though this “thermal” radio-frequency radiation is a natural extension
of the optical line and continuous spectra, it is somewhat different, in detail, because
in the radio-frequency region hv < kT, and stimulated emission, which is propor-
tional to exp(—hv/kT), is therefore much more important in that region than in the
ordinary optical region. We will examine the continuous spectrum first, and then the
recombination-line spectrum. ’

In the radio-frequency region, the continuum is due to free—free emission, and the
emission coefficient is given by the same Equation (4.22) that applies in the optical
region. However, in the radio-frequency region, the Gaunt factor g o (T, Z, v) # 1,
as in the optical region, but rather

373 1/2
it 20=L0(HT5) - T]

w27Z2e4my?

2
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where y = 0.577 is Euler’s constant. Numerically, this is approximately
V3 ([, T
T,.Z,v)=— {ln—+17.7),
81 ) - ( 7 )

with T in K and v in Hz, and thus at 7 ~ 10,000 K, v ~ 10° MHz, gsr ~10.
The free—free effective absorption coefficient can then be found from Kirchhoff’s
law, and is

oy = nyn, L 4.31)
v G mk Ty 22 S ‘

per unit length. Note that this effective absorption coefficient is the difference between
the true absorption coefficient and the stimulated emission coefficient, since the
stimulated emission of a photon is exactly equivalent to a negative absorption process;
in the radio-frequency region (v < kT') the stimulated emissions very nearly balance
the true absorptions and the correction for stimulated emission [1 — exp(hv/kT)] =~
hv/kT <« 1.

Substituting numerical values and fitting powers to the weak temperature and
frequency dependence of g s,

T, = / Kk, ds
= 8.24 x 1072713521 / nyn, ds (432)

=824 x 1072713y 21E |

In this formula T is measured in K, v in GHz, and E,, the so-called continuum
emission measure, in cm~% pc. It can be seen from Equations (4.31) or (4.32) that
at sufficiently low frequency all nebulae become optically thick; for example, an H 1T
region with n, ~ n, ~ 102 cm~ and a diameter 10 pc has 7, ~ 1 at v ~ 200 MHz,
and a planetary nebula with n, ~ 3 x 10 cm™3 and a diameter of 0.1 pc has 7, ~ 1
at v~ 600 MHz. Thus, in fact, many nebulae are optically thick at observable
low frequencies and optically thin at observable high frequencies. The equation of
radiative transfer, :

dI
D e+, 4.33)
ds
or
dr '
e AR Y N ¢») (4.34)
dr, K,
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has the solution for no incident radiation
Ty
I,= / B, (T) exp(—1,)dr,. 4.35)
0

In the radio-frequency region,

2hv3 1 kT
2 exp(hv/kT) -1 c2

B\(T) = (4.36)
is proportional to T', so it is conventional in radio astronomy to measure intensity in
terms of brightness temperature, defined by T}, = c*I,,/2v*k. Hence (4.35) can be
rewritten

T
Ty = / T exp(—t,) d7,, 4.37)
0

and for an isothermal nebula, this becomes

T 0
T,, = T[1— exp(z,)] [% A ] :

— T ast, —> 00

Thus the radio-frequency continuum has a spectrum in which 7, varies approxi-
mately as v~2 at high frequency and is independent of v at low frequency.

The HIrecombination lines of very high z also fall in the radio-frequency spectral
region and have been observed in many gaseous nebulae. Some specific examples of
observed lines are H 109« (the transition with An =1 from n =110 to n = 109) at
v = 5008.89 MHz, A = 5.99 cm, H 1378 (the transition with An =2 from n =139
to n = 137) at v = 5005.0 MHz, A = 6.00 cm, and so on. The emission coefficients
in these radio recombination lines may be calculated from equations similar to those
described in Section 4.2 for the shorter wavelength optical recombination lines. For all
lines observed in the radio-frequency region, n > n; defined there, so that at a fixed
n, n,; & (2L + 1), and only the populations #,, need be considered. One additional
process, in addition to those described in Section 4.2, must also be taken into account,
namely collisional ionization of levels with large n and its inverse process, three-body
recombination,

H(n) +e s H +e+e.

The rate of collisional ionization per unit volume per unit time from level n may be
written

NpReUC;onization (n)= nnneqn,i(T)’ (4.38)

and the rate of three-body recombination per unit time per unit volume may be written
n pngqbn (T); so, from the principle of detailed balancing,

2
2nmkT

3/2
¢, (T) =n? ( ) exp(X,,/kT)q, (T). (4.39)
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Thus the equilibrium equation that is analogous to Equation (4.16) becomes, at
high n,

) )
nphe [an(T) + ne¢n(T)] + Z nn’An’,n + Z NyReqn n

n'>n n'=ngy
4.40)
n—1 [}
=Hh, Z An,n’ + Z neqn,n’(T) +n.q,:(T) |,
n'=ny n'=n
where
1
A= = D QL+ DAL (4.41)
L,L

is the mean transition probability averaged over all the L levels of the upper principal
quantum number. These equations can be expressed in terms of b, instead of n,,
and the solutions can be found numerically by standard matrix-inversion techniques.
Note that since the coefficients b, have been defined with respect to thermodynamic
equilibrium at the local T, n,, and n p» the coefficient b for the free electrons is
identically unity, and therefore b, — 1 as n — co. Some calculated values of b,
for T =10,000 K and various n, are plotted in Figure 4.2, which shows that the
increasing importance of collisional transitions as n,, increases makes b, ~ 1 at lower
and lower n.

To calculate the emission in a specific recombination line, it is again necessary to
solve the equation of transfer, taking account of the effects of stimulated emission. In
this case, for an n, An line between the upper level m =n + An and the lower level
n, if k,; is the true line-absorption coefficient, then the line-absorption coefficient,
corrected for stimulated emission, to be used in the equation of transfer is

ky =Ky (1 - gﬂ exp(—hv/kT)) , (4.42)

n

since it is the net difference between the rates of upward absorption processes and of
downward-induced emissions. If we expand (4.42) in a power series, it becomes

b, hv  dln(b,)
ksz,(—m———" An). (4.43)
e\ by, kT dn

Since b, /b, ~ 1 and hv < kT, the line-absorption coefficient can become negative,
implying positive maser action, if (d In b,,) /dn is sufficiently large. Calculated values
of this derivative are therefore also shown in Figure 4.2. Since, for typical observed
lines hv/kT =~ 1073, it can be seen from this figure that the maser effect is in fact
often quite important. We will again use these concepts and expressions to calculate
the strengths of the radio-frequency recombination lines in Chapter 5.
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Dependence of b, and d In b, /dn on n at various densities, all at T = 10,000 K.

4.5 Radiative Transfer Effectsin H I -

For most of the emission lines observed in nebulae there is no radiative-transfer prob-
lem; in most lines the nebulae are optically thin, and any line photon emitted simply
escapes. However, in some lines, especially the resonance lines of abundant atoms,
the optical depths are appreciable, and scattering and absorption must be taken into
account in calculating the expected line strengths. Two extreme assumptions, Case A,
a nebula with vanishing optical thickness in all the H I Lyman lines, and Case B, a
nebula with large optical depths in all the Lyman lines, have already been discussed in
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Section 4.2; and although these two cases do not require a detailed radiative-transfer
solution, in the intermediate cases a more sophisticated treatment is necessary. Other
radiative-transfer problems arise in connection with the He I triplets, the conversion
of He I Lee and HI LS into observable O III or O I line radiation, respectively, by the
Bowen resonance-fluorescence processes, and fluorescence excitation of other lines
by stellar continuum radiation. In this section some general concepts about the escape
of line photons from nebulae will be discussed in the context of the H I Lyman and
Balmer lines, and then in succeeding sections these same concepts will be applied to
the other problems mentioned. ‘

In a static nebula the only line-broadening mechanisms are thermal Doppler
broadening and radiative damping, and in the cores of the lines, where radiative
damping can be neglected, the line-absorption coefficient has the Doppler form

k) = ko €Xp [— (Av/AvD)z] — ko exp(—x?)  [em?], (4.44)
where

_ R oA VTS o (4.45)
8732 w; Avp  mcAvp

ko

is the line-absorption cross section per atom at the center of the line,

2
k T2 vy [Hz]

AVD =
myc

is the thermal Doppler width (Hz), and f;; is the absorption oscillator strength between
the lower and upper level i, j. The full-width at half-maximum (FWHM) of the line is
2+/In 2 times larger than Avj,. Small-scale micro-turbulence can be taken into account
as a further source of broadening of the line-absorption coefficient by adding the
thermal and turbulent velocity terms in quadrature, Av% = Av}h ermal T Avtzu rbulent*
Larger scale turbulence and expansion of the nebula can be treated by considering the
frequency shift between the emitting and absorbing volumes.

In a static nebula, a photon emitted at a particular point in a particular direc-
tion and with a normalized frequency x from the center of the line has a probability
exp(—1,) of escaping from the nebula without further scattering and absorption.
Here 7, is the optical depth from the point to the edge of the nebula in this di-
rection and at this frequency. Averaging over all' directions gives the mean escape
probability from this point and at this frequency, and further averaging over the fre-
quency profile of the emission coefficient gives the mean escape probability from the
point.

For all the forbidden lines and for most of the other lines, the optical depths
are so small in every direction, even at the center of the line, that the mean escape
probabilities from all points are essentially unity. However, for lines of larger optical
depth we must examine the probability of escape quantitatively.
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Consider an idealized spherical homogeneous nebula, with optical radius in
the center of line 7. So long as 7y < 10, only the Doppler core of the line-
absorption cross section need be considered. The photons are emitted with the same
Doppler profile, and the mean probability of escape must therefore be averaged
over this profile. If, at a particular normalized frequency x, the optical radius of
the nebula is 7,, the mean probability of escape averaged over all directions and
volumes is

3 1 1 1
= 1= — — 4 -2 . 4.46
P (%) 4, [ 22 + (rx * 213) exp( tx)] (4:40)

When we average over the Doppler profile, the mean escape probability for a photon
emitted in the line is

e (o) = % /_oo p () exp(—x2)dx (4.47)

where 7 is the optical radius in the center of the line. This integral must be evaluated
numerically, but for optical radii (7o < 50) that are not too large, the results can be
fitted fairly accurately with &(ty) = 1.72/(zy; + 1.72).

If we consider a Lyman line Ln, photons emitted in this line that do not escape
from the nebula are absorbed by another hydrogen atom, and each absorption process
represents an excitation of the n 2po level of H 1. This excited level very quickly
undergoes a radiative decay, and the result is either resonance scattering or resonance
fluorescence excitation of another H I line. If the photon emitted from the n’P level
decaysinal2S-n 2 po transition, the process is resonance scattering of an Lz photon.
Ifit is emitted in the 2 2S—n % P° transition, the process is conversion of Lz into Hn plus
excitation of 2 25, leading to emission of two photons in the continuum. If it is emitted
in the 3 25—n 2P transition, the process is conversion of Lz into Pn plus excitation
of 328, leading to emission of Her plus Lar, and so on. The probabilities of each
of these processes may be found directly from the probability matrices Cyy, 1/ and
P, - defined in Section 4.2. If we define P, (Lm) and P, (Hm) as the probabilities
that absorption of an Lz photon results in emission of an Lm photon and of an Hm
photon, respectively, then

P,(Lm) = Cp1 m1Pm1,10 (4.48)

and
P,(Hm) = Cpy o Pmo,21 + Cnt,m1Pm1,20 + Crim2 P2 21- (4.49)

We can now use these probabilities to calculate the emergent Lyman-line spec-
trum emitted from a model nebula. It is easiest to work in terms of numbers of photons
emitted. If we write R,, for the total number of Ln photons generated in the nebula
per unit time by recombination and subsequent cascading, and A, as the total num-
ber of Lz photons absorbed in the nebula per unit time, then J,, the total number of
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Ln photons emitted in the nebula per unit time, is the sum of the contributions from
recombination and from resonance fluorescence plus scattering:

o0
J,=R,+ Z Ay P, (Ln). (4.50)
=n

Since each Lz photon emitted has a probability ¢, of escaping, the total number of
Ln photons escaping the nebula per unit time is

o0
E,=¢,J,=s¢, {RH +y Aum(Ln):l . (4.51)
=n

Finally, in a steady state the number of Ln photons emitted per unit time is equal to
the sum of the numbers absorbed and escaping per unit time,

Jy= A, + E,= A, + &,J,. (4.52)

Thus, eliminating J,, between (4.51) and (4.52),

A, =(1—¢g,) {R,, +) Aum(Ln)j| , (4.53)

m=n

and since the R, and P,,(Ln) are known from the recombination theory and the &,, are
known from the radiative-transfer theory, Equation (4.53) can be solved for the 4,
by a systematic procedure, working downward from the highest n at which ¢,, differs
appreciably from unity. Then from these values of R,, the E,, may be calculated from
(4.51), giving the emergent Lyman-line spectrum.

‘ Next we will investigate the Balmer-line spectrum, which requires further analy-
sis. Let us write S, for the number of Hn photons generated in the nebula per unit
time by recombination and subsequent cascading. Suppose that there is no absorption
of these Balmer-line photons, so that K, the total number of Hn photons emitted in
the nebula per unit time, is the sum of contributions from recombination and from
resonance fluorescence due to Lyman-line photons,

00
K,=8,+ Z Ay Py (Hn).
=n

Then, since the S, and P,,(Hn) are known from the recombination theory and the
Am are known from the previous Lyman-line solution, the K, can be calculated
immediately to obtain the emergent Balmer-line spectrum. Note that R,,, Sy, J,,, K,,,
and A, are proportional to the total number of photons; the equations are linear in
these quantities; and the entire calculation can therefore be normalized to any S,,, for
instance, to Sy, the number of HB photons that would be emitted if there were no
absorption effects. The results, in the form of calculated ratios of Hae/HB and HB/Hy
intensities, are shown in Figure 4.3 as a function of 7p;(L«), the optical radius of
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Radiative transfer effects caused by finite optical depths in Lyman and Balmer lines. Ratios
of total emitted fluxes Hee/Hp are shown for homogeneous static isothermal model nebulae
at T = 10,000 K. Each line connects a series of models with the 7, (L), given at the end of
the line; along it 7o;(Her) = 5 and 10 at the two points along each line indicated by bars for
TOI(LOI) > 400.

the nebula at the center of La; and the transition from C%se A (19 > 0) to Case B
(to; = 00) can be seen clearly. ‘

Although in most nebulae, the optical depths in the Balmer lines are small, there
could be situations in which the density n.(HC, 2 25) is sufficiently high that some self-
absorption does occur in these lines. The optical depths in the Balmer lines can again
be calculated from Equation (4.45), and since they are proportional to n (H?, 2 25),
the radiative-transfer problem is now a function of two variables, 7y;(La), giving the
optical radius in the Lyman lines, and another, say, 7y;(Ha), giving the optical radius
in the Balmer lines. Although the equations are much more complicated, since now
Balmer-line photons may be scattered or converted into Lyman-line photons and vice
versa, there is no new effect in principle, and the same general type of formulation
developed previously for the Lyman—liﬁe absorption can still be used. We will not
examine the details here, but will simply discuss physically the calculated results
shown in Figure 4.3. For 1q;(He) = 0, the first effect of increasing 7 (La) is that
LB is converted into He plus the two-photon continuum. This increases the Ha/HB
ratio of the escaping photons, corresponding to a move of the representative point
to the right in Figure 4.3. However, for slightly larger t;(La), Ly photons are also
converted into Pa, Ha, HB, L, and two-photon continuum photons, and since the
main effect is to increase the strength of Hp, this corresponds to a move downward
and to the left in Figure 4.3. For still larger 7o;(La), as still higher Ln photons are
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converted, Hy is also strengthened, and the calculation, which takes into account
all of these effects, shows that the representative point describes the small loop of
Figure 4.3 as the conditions change from Case A to Case B. For large tp;(La), the
effect of increasing 7o, (Ha) is that, although Ho is merely scattered (because any LA
photons it forms are quickly absorbed and converted back to Ha), HB is absorbed
and converted to He plus Pa. This increases Ha/HB and decreases H8/Hy, as shown
quantitatively in Figure 4.3,

4.6 Radiative Transfer Effects in He I

The recombination radiation of He I singlets is very similar to that of HI, and Case B is
a good approximation for the He I Lyman lines. However, the recombination radiation
of the He I triplets is modified by the fact that the He® 2 3 term is considerably more
metastable than H® 2 2, and as a result self-absorption effects are quite important (as
is collisional excitation from 2 35, to be discussed later). As the energy-level diagram
of Figure 4.4 shows, 2 3§ is the lowest triplet term in He, and recaptures to triplets tend
to cascade down to it. Depopulation occurs only by photoionization, especially by HI
La, by collisional transitions to 2 1S and 2 | P2, or by the strongly forbidden 2 35—-11S
radiative transition, as discussed in Section 2.4. As a result n(2 35) is large, which
in turn makes the optical depths in the lower 2 35— 3 P? lines significant. Figure 4.4
shows that 110830 2 3523 P? photons are simply scattered, but that absorption of
13889 2 3S-3%P? photons can lead to their conversion to A4.3 um 3 3533 P2, plus
23P-33517065, plus 2 35-23 P?110830. The probability of this conversion is

A33533p0 ~0.10

A335,33p0 + Ag3533po

per absorption. At larger 7o;(A10830), still higher members of the 2 3S—n 3 P? series
are converted into longer wavelength photons.

The radiative-transfer problem is very similar to that for the Lyman lines dis-
cussed in Section 4.5, and may be handled by the same kind of formalism. Calculated
ratios of the intensities of 13889 (which is weakened by self-absorption) and of A7065
(which is strengthened by resonance fluorescence) relative to the intensity of A4471
2 3P4 3D (which is only slightly affected by absorption) are shown for spherically
symmetric homogeneous model nebulae in Figure 4.5.

The thermal Doppler widths of He I lines are smaller than those of H I lines,
because of the larger mass of He, and therefore whatever turbulent or expansion
velocity there may be in a nebula is relatively more important in broadening the He I
lines. The simplest example to consider is a model spherical nebula expanding with
a linear velocity of expansion,

Uegp N =wr; 0<r <R; (4.54)
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Figure 4.4

Partial energy-level diagram of He I, showing strongest optical lines observed in nebulae. Note
that 1 2 has been omitted, and terms with n > 6 or L > 3 have been omitted for the sake of
space and clarity.

for then, between any two points r; and r, in the nebula, the relative radial velocity is
u(r, n)=ws, (4.55)

where s is the distance between the points and w is the constant velocity gradient.
Thus photons emitted at r; will have a line profile centered about the line frequency
vy, in the reference system in which r; is at rest. However, they will encounter at r,
material absorbing with a profile centered on the frequency

V(ry 1) = vy, (1 + %) , (4.56)

and the optical depth in a particular direction to the boundary of the nebula for a
photon emitted at r{ with frequency v may be written

ry=R o 2
T, (r) = / T 23Sk exp {— [””—w] }ds. (4.57)
0
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Figure 4.5 :

Radiative transfer effects due to finite optical depths in He I 23889 2 35-3 3P°, Ratios o
emergent fluxes of 17065 and A3889 to the flux in A4471 are as a function of optical radius
79(A3889) of homogeneous static (w = 0) and expanding (w s 0) isothermal nebulae at
T =10,000 K.

It can be seen that increasing velocity of expansion tends, for a fixed density z(2 35), to
decrease the optical depth to the boundary of the nebula and thus to decrease the self-
absorption effects. This effect can be seen in Figure 4.5, where some calculated results
are shown for various ratios of the expansion velocity u,,,(R) = @R to the thermal
velocity uy, = (2kT /mye) /2, as functions of 7y, (13889) = n(2 3S)kq;(A3889) R, the
optical radius at the center of the line for zero expansion velocity. Note that the
calculated intensity ratios for large u,,,/u;, and large 7o are quite similar to those
for smaller u,,,/u,, and smaller . .

4.7 The Bowen Resonance-Fluorescence Mechanisms for O III and O 1

There is an accidental coincidence between the wavelength of the He II Lo line at
2303.78 and the O II1 2 p? > P,~3d 3P line at 1303.80. As we have seen, in the Het+
zone of a nebula there is some residual He™, so the He II La photons emitted by
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recombination are scattered many times before they escape. As a result, there is a
high density of He II La: photons in the He? zone, and since O*™ is also present
in this zone, some of the He IT Lo photons are absorbed by it and excite the 3d 3P2"
level of O III. This level then quickly decays by a radiative transition, most frequently
(relative probability 0.74) by resonance scattering in the 2 p?3P,-3d 3P2" line—that
is, by emitting a photon. The next most likely decay process (probability 0.24) is
emission of 1303.62 2p? 3P;-3d 3 P2, which may then escape or may be reabsorbed
by another O+ ion, again populating 3d >PJ. Finally (probability 0.02), the 3d 3py
level may decay by emitting one of the six longer wavelength photons 3 p°L,-3d> Py
indicated in Figure 4.6. These levels 3p 3L ; then decay to 3s and ultimately back
to 2p2 3P, as shown in the figure (or to 2p3 and then back to 2p? *P, emitting two
far-ultraviolet line photons, as shown in the figure). This is the Bowen resonance-
fluorescence mechanism, the conversion of He I Lo to those lines that arise from
3d 3P20 or from the levels excited by its decay. These lines are observed in many
planetary nebulae, and their interpretation, requiring the solution of the problem of
the scattering, escape, and destruction of He I Lo with the complications introduced
by the O™ scattering and resonance fluorescence, has been worked out years ago.
Some of the most important references to it are given at the end of the chapter for
those who wish to study it further.
A second accidental near-coincidence occurs between the wavelength of the
H I LA line at- 1102572 A and the O ¥ 2p* 3P, — 2p33d 3D line at 11025.76 A,
which excites the 2p33d 3D§ level. Some atomic oxygen exists in the HT zone,
due to rapid charge transfer between oxygen and hydrogen, so the situation is anal-
ogous to that for O IIT and He II La. Excitations of 2p33d 3D§ by this process
are followed by successive decays producing 2p33p 3P,—2p 33d 3D§ 111286.9 A,
2p3 3538, °-2p 33p 3P, 18446.36 A, and the three lines of the multiplet 2p* 3P, ; o—
2p3 3s 3SfAA1302.17, 1304.86, 1306.03 A. In the simplest case each excitation
produces a cascade through the first two of these lines, followed by one of the last
three, in the predicted ratio of their transition probabilities, 3.4:2.0:0.7. The relative
intensities of the first two lines and the sum of the intensities of the multiplet are
thus all equal in photon units, so their predicted relative intensities in energy units are
inversely proportional to their wavelengths.

4.8 Collisional Excitation in He 1

-

Collisional excitation of H is negligible in comparison with recombination in popu-
lating the excited levels in planetary nebulae and H II regions, because the threshold
for even the lowest level, n =2 at 10.2 eV, is large in comparison with the thermal
energies at typical nebular temperatures. This can be confirmed quantitatively us-
ing collision strengths listed in Table 3.16. However, in He the 2 35 level is highly
metastable, and collisional excitation from it can be important, particularly in excit-
ing 2 3P and thus leading to emission of He I 210830 A. To fix our ideas, let us
consider a nebula sufficiently dense (n, > n.) that the main mechanism for depopu-
lating 2 3 is collisional transitions to 2 1§ and 2 ! P?, as explained in Section 2.4, The
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Figure 4.6

Schematized partial energy-level diagrams of [O III] and He II showing coincidence of He Il Lo
and [O TIT] 2 p? 3 P,—3d 3P 2303.80. The Bowen resonance fluorescence lines in the optical and
near-ultraviolet are indicated by solid lines, and the far-ultraviolet lines that lead to excitation
or decay are indicated by dashed lines. There are six observable lines in all leading down from
3d 3P, and 14 from 3p 3P, |, 3p 35|, and 3p 3D , |, and with relative strengths that can be
calculated just from the ratios of transition probabilities.
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Table 4.13
Collision strengths Y for collisions from He%(2 35)

T (K) 238,23p° 238,338 235,33p° 2358,33D 235,31D
6,000 16.3 2.40 1.61 1.46 0.249
10,000 25.8 2.29 1.61 1.95 0.259
15,000 37.1 225 1.59 2.52 0.257
20,000 46.5 226 1.57 2.99 0.252
25,000 55.3 231 1.56 3.43 0.245

equilibrium population in 2 35 is then given by the balance between recombinations to
all triplet levels, which eventually cascade down to 2 35, and collisional depopulation
of 238,

nen(HeNagHe?, n®L) =n,n(23S) [a5355 15 + 42352 1p0] - (4.58)
The rate of collisional population of 2 3P? is thus

nen(He)q, 35 3po

ap(He®, n3L) (4.59)
q23s,2ts T 42352 1po]

nen(2°8)4; 355 3p0 = [

so the relative importance of collisional to recombination excitation of 110830 is
given by the ratio

9235,23p° ag(He’, n3L)

nen(HeNafgy (23215 T assatre] ol

nn238)q, 35,23p0

(4.60)

Computed values for the collision strengths Y that are used to compute g, 35 5 3po
are listed in Table 4.13; they are much larger than those for g, 3 5 15 and g, 35 5 1po
(listed in Table 2.5), because the cross section for the strong allowed 2 352 3p
transition is much larger than the exchange cross sections to the singlet levels. At
arepresentative temperature 7 = 10,000 K, the first factor in Equation (4.60) has the
numerical value 6.0; the second, 1.4; and the ratio of collisional to recombination
excitation is thus about 8. In other words, collisional excitation from 2 35 completely
dominates the emission of A10830, and the factor by which it dominates depends only
weakly on T, and can easily be seen to decrease with n, below n,.

Though the collisional transition rates from 23S to 2 1S and 2 1 P9 are smaller than
to 2 3P?, the recombination rates of population of these singlet levels are also smaller,
and the collisions are therefore also important in the population of 2 1S and 2 1P°.
The cross sections for collisions to the higher singlets and triplets are smaller but
not negligible; from the best available cross sections it appears likely that collisional
population of 3 3P is significant and somewhat affects the strength of 13889. The
available atomic data indicates that there is a non-negligible collisionally excited
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Schematized partial energy-level diagrams of O I and H I showing the coincidence between

HILg and O 12p* *P,-2p*3d>Dg11025.76. The far ultraviolet lines that lead to excitation

are indicated by dashed lines, and the cascade lines in the infrared, optical, and ultraviolet are
indicated by solid lines.

component in the observed strength of 15876 in planetary nebulae. Some collision
strengths for the excitation of He I levels with n = 3 are also listed in Table 4.13.
Similar collisional-excitation effects occur from the metastable He? 2 1§ and H?
2 2S levels, but they decay so much more rapidly than He? 2 3S that their populations
are much smaller and the resulting excitation rates are negligibly small. ‘

A good general summary of the emission processes in gaseous nebulae is given by
Seaton, M. J. 1960, Reports on Progress in Physics 23, 313.

The theory of the recombination-line spectrum of H I goes back to the early 1930s and was
developed in papers by H. H. Plaskett, G. G. Cillie, D. H. Menzel, L. H. Aller, L. Goldberg,



104

Calculation of Emitted Spectrum

and others. In more recent years it has been refined and worked out more accurately by M. J.
Seaton, A. Burgess, R. M. Pengelly, M. Brocklehurst, D. G. Hummer, P. J. Storey, and others.
The treatment in Chapter 4 follows most closely the following definitive references:

Seaton, M. J. 1959, MNRAS, 119, 90.
Pengelly, R. M. 1964, MNRAS, 127, 145.

The second reference treats the low-density limit for H I and He II in detail. (Tables 4.1, 4.2,
and 4.3 are derived from it.)

Pengelly, R. M., & Seaton, M. J. 1964, MNRAS, 127, 165.

The effects of collisions in shifting L at fixed n are discussed in this reference. Table 4.10
comes from it.

Brocklehurst, M. 1971, MNRAS, 153, 471.
Hummer, D. G., & Storey, P. J. 1987, MNRAS, 224, 801.
Hummer, D. G., & Storey, P. J. 1992, MNRAS, 254, 277.

Storey P. J., & Hummer D. G. 1995, MNRAS, 272, 41 (on the web at hrtp://adc.gsfc
.nasa.gov/adc-cgi/cat.pl?/catalogs/6/6064/ .

These references include the definitive results for H I and He II at finite densities in the optical
region, taking full account of the collisional transitions. Tables 4.4 and 4.5 are based upon the
last reference, which includes full electronic access.

Robbins, R. R. 1968, ApJ, 151, 497; and ApJ, 151, 511.

Robbins, R. R. 1970, ApJ, 160, 519.

Robbins, R. R., & Robinson, E. L. 1971, ApJ, 167, 249.

Brocklehurst, M. 1972, MNRAS, 157, 211.

Ferland, G. J. 1980, MNRAS, 191, 243.

Almog, U., & Netzer, H. 1989, MNRAS, 238, 57.

Smits, D. P. 1996, MNRAS, 278, 683.

Kingdon, J. B., & Ferland, G. J. 1996, MNRAS, 282, 723.

Hummer, D. G., & Storey, P. J. 1998, MNRAS, 297, 1073.

Porter, R. L., Bauman, R. P,, Ferland, G. J., & MacAdam, K. B. 2005, ApJ, 622,73L.

The first two papers by Robbins work out the theory in detail for the He I triplets; the third is
concerned with the singlets (for Case A only). The paper by Ferland analyzes the applicability
of Case B to the He I singlets. The Porter et al. article is complete, for it describes triplet and
singlet results, including collisions from 2 3S. (Table 4.6 is based on it.)

Brown, R. L., & Mathews, W. G. 1970, ApJ, 160, 939.

This reference collects previous references and material on the H T and He I continuum, and
includes the most detailed treatment of the He I continuum. (Tables 4.7-4.9 and 4.11 are taken
from this reference.)

Ferland, G. J. 1980, PASP, 92, 596.
Martin, P. G. 1988, ApJS, 66, 125.
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These references give the continuous spectrum of the H I continuum (for specific wavelengths
and filters), and recombination coefficients for Cases A and B over a very wide range in
temperature (500 K < T < 2,000,000 K).

Scheuer, P. A. G. 1960, MNRAS120, 231.
Hummer, D. G. 1988, ApJ, 327, 477.

The firstis a very complete reference on free—free emission in the radio-frequency region, while
the rest do the general problem.

The first published prediction that the radio-frequency recombination lines of H I would be
observable was made by
Kardashev, N. S. 1959, Astron. Zhurnal, 36, 838 (English translation, 1960, Soviet
Astronomy AJ, 3, 813.

The key reference on the importance of maser action and on the exact variation of b, with n is
Goldberg, L. 1966, ApJ, 144, 1225.

The radiative transfer treatment in this chapter essentially follows this reference.
The equilibrium equations for the populations of the high levels are worked out in
Seaton, M. J. 1964, MNRAS, 127, 177.
Sejnowski, T. J., & Hjellming, R. H. 1969, ApJ, 156, 915.
Brocklehurst, M. 1970, MNRAS, 148, 417.

The last of these three references is the definitive treatment and makes full allowance for all
collisional effects. (Figure 4.2 is based on it.)

A good deal of theoretical work has been done by several authors on radiative transfer problems
in nebulae. The portion of this research used in this chapter is summarized (with complete
references) in

Osterbrock, D. E. 1971, JQSRT, 11, 623.

Some of the key references concerning the H I lines are
Capriotti, E. R. 1964, ApJ, 139, 225, and 140, 632.
Capriotti, E. R. 1966, ApJ, 146, 709.

Cox, D. P.,, & Mathews, W. G. 1969, ApJ, 155, 859.

(Figure 4.3 is based on the last reference.)

The radiative transfer problem of He I lines was worked out earlier in
Pottasch, S. R. 1962, ApJ, 135, 385.
Robbins, R. R. 1968, ApJ, 151, 511.

A more recent treatment is
Almog, U., & Netzer, H. 1989, MNRAS, 238, 57.

(Figure 4.5 is derived from calculations from these references.)

The Bowen resonance-fluorescence mechanism was first described by
Bowen, L. S. 1924, ApJ, 67, 1.
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The radiative transition probabilities necessary for tracing all the downward radiative decays
following excitation of O Il and 3d 3P10 are given by

Saraph, H. E., & Seaton, M. J. 1980, MNRAS, 193, 617.

Bhatia, A. K., & Kastner, S. O. 1993, ADNDT, 54, 133.

Froese Fischer, C. 1994, Phys. Scripta, 49, 51.

)

Comparison of Theory
with Observations

Solutions are described in
Weymann, R. J., & Williams, R. E. 1969, ApJ, 157, 1201.
Harrington, J. P, 1972, ApJ, 176, 127.
Kallman, T., & McCray, R. 1980, ApJ, 242, 615.
Elitzur, M., & Netzer, H. 1985, ApJ, 291, 646.
Netzer, H., Elitzar, M., & Ferland, G. J. 1985, ApJ, 299, 752.
Kastner, S. O., & Bhatia, A. K. 1996, MNRAS, 279, 1137.

Observations of the lines in various objects are described by
Grandi, S. A. 1980, ApJ, 238, 10.
Liu, X.-w., & Danziger, J. 1993, MNRAS 261, 463, and 262, 699.
O’Dell, C. R., & Miller, C. 0. 1992, ApJ, 390, 219.
Rudy, R. J., Mazuk, S., Puetter, R. C., & Hamann, F. 2000, ApJ, 539, 166.

5.1 Introduction

In the preceding three chapters much of the available theory on gaseous nebulae has
been discussed, so that we are now in a position to compare it with the available
observations. The temperature in a nebula may be determined from measurements of
ratios of intensities of particular pairs of emission lines—those emitted by a single
ion from two levels with considerably different excitation energies. Although the
relative strengths of H recombination lines vary only extremely weakly with T,
the ratio of the intensity of a line to the intensity of the recombination continuum
varies more rapidly and can be used to measure 7. Further information on the
temperature may be derived from radio observations, combining long- and short-
wavelength continuum observations (large and small optical depths, respectively)
or long-wavelength continuum and optical-line observations. The electron density
in a nebula may be determined from measured intensity ratios of other pairs of
lines—those emitted by a single ion from two levels with nearly the same energy but
with different radiative-transition probabilities. Likewise, measurements of relative
strengths of the radio recombination lines give information on both the density and
the temperature in nebulae. These methods, as well as the resulting information on
the physical parameters of characteristic nebulae, are discussed in the first sections
of this chapter.

In addition, information on the involved stars that provide the ionizing photons
may be derived from nebular observations. For, if a nebula is optically thick to a
particular type of ionizing radiation (for instance, in the H Lyman continuum), then
the total number of photons of this type emitted by the star can be determined from the
properties of the nebula. By combining these nebular observations, which basically
measure the far-ultraviolet-ionizing radiation from the involved stars, with optical
measurements of the same stars, a long base-line color index that gives information
on the temperature of the stars can be determined. This scheme and the information

The He I collision strengths listed in Table 4.13 are from
Bray, L, Burgess, A, Fursa, D. V., & Tully, J. A. 2000, A&AS, 146, 481.





