

Peter's atomic line list

- http://www.pa.uky.edu/~peter/atomic/
- http://www.pa.uky.edu/~peter/newpage/ - Beta version with new features
- Search wavelength range to find what lines are present

NIST Atomic Spectra Database Levels Form

This form provides access to NIST cr		latest versions of Web browsers and Jav ta on atomic energy levels.
Spectrum: o iii c.g., Fe	I	
Default Values		Retrieve Data
Level Units: cm-1 +	Extended Search:	Set Additional Criteria for all levels sean
Format output: HTML (formatted) Display output: in its entirety		
Page size: 15		3 9 3
Term ordered 💿 term energy 🗌		
Energy ordered O		
Level I Principal information: configuration		
Principal term		
✓ Level ✓ J ✓ Lande-g		

			ry data no					0.0		window)		es for		
	_	En Transition P	Lives		Moore 1993 Reader et al. 199 Wess et al. 199			01	O II En			ation		
Ritz Wavelength Air (Å)	Rei.	A., (5 ⁻¹)	Acc.	E; (cm ⁴)	E, (cm*)		r Level Term, J	<u>к</u>		r Lovel Term, J		Туре		Line Ref.
4 958.911		6.21e-03		113.178 -	28 273.27	2 #22p2	29	ï	2 s ² 2p ²	ip.	2	MI		
4 958.911		4.57e-06	C+	113.178 -		28'28'		1	20'20'		2	62	74899	
5 006.843		1.818-02		306.174 -	20 273.27	2x ² 2p ²	38	2	$2a^{2}2p^{2}$	°0	2	MT	74010,74899,74026	

			ery data no					0.0		e window		es for		1
	_		ergy Levels Lines	6	Moore 1993 Reader et al. 199			0.1	Line Warshing	en and ca	101/10			
		Transition P	robabilities	ц	West at at 1996				Q ID Transitio	in Probabil	643	_	\triangleleft	
Ritz Wavelength Air (Å)	Rei.	A., (5*)	Acc.	E, (cm*)	E, (cm')		r Level Term, J	8		r Level Term, J		Туре	TP Raf.	Lin Ref
4 958.911		6.21e-03		113.178 -	20 273.27	2#22p2	29	ï	2 s ² 2p ²	ip.	2	MI	T4010, T4899, T4825	
4 958.911		4.57e-06	C+	113.170 -	20 273.27	29'29'	29	1	28'29'	'p	2	62	14899	
5 006.843		1.818-02		306.174 -	20 273.27	2s ² 2p ¹	38	2	$2 a^2 2 p^4$	°0	2	MT	24010,24099,24026	

rXiv.org	> physics > arXiv:1905.09276
Physics >	History and Philosophy of Physics
Einste	in's biggest mistake?
Gary J. Fe	rland
(Submitted	on 15 Apr 2019)
apocryp blunder mechan introduc that affe	any, was Einstein's biggest mistake, the one most affecting our physics today? There is a perhaps hall story, recounted by George Gamow, that he counted his cosmological constant as his biggest We now know his hypothesized cosmological constant to be correct. His lifelong rejection of quantur ics, an interesting side-story in the evolution of 20th-century physics, is a candidate. None of these edidificulties in how our physics is done today. It can be argued that his biggest actual mistake, one exts many subfields of physics and chemistry and bewilders students today, occurred in his naming of d B coefficients.
	Observatory in press
Subjects:	History and Philosophy of Physics (physics.hist-ph)
Cite as:	arXiv:1905.09276 [physics.hist-ph] (or arXiv:1905.09276v1 [physics.hist-ph] for this version)
Submissi	on history
From: Gary	J. Ferland [view email]
[v1] Mon. 1	5 Apr 2019 13:38:34 UTC (3 KB)

Two types of lines

Recombination lines AGN3 sec 4.2

- -e + p radiative recombination
- Rate coefficient q~10⁻¹³ cm³ s⁻¹
- Mainly H, He in optical/IR, 1 and 2 electron O, C, Fe in the X-ray
- Lines do not cool the gas since no kinetic energy is removed

Collisionally excited lines AGN3 3.5

- Inelastic e + ion collision
- Lines cool the gas
- *− q*~10⁻⁹ cm³ s⁻¹
- Heavy elements

Selection rules for transitions

AGN3

- Appendix 4 Nebular quantum mechanics
- Appendix 6 Molecular quantum
- ◆ O III obeys all selection rules, A~10⁶ 10⁸ s⁻¹
- ◆ O III] violates a minor one A~100 s⁻¹
- [O III] violates rules $A \le 1 s^{-1}$

Species vs spectra

- ◆ H⁰, C³⁺, O²⁺, H₂, CO are baryons
- H I, C IV, O III, H₂, and CO are the spectra they emit / absorb
- O III is a permitted line produced by O²⁺, while [O III] is a forbidden line
- C III] is a semi-forbidden line, often an intercombination line

Species vs spectra

- **•** Η I Lyα *emission* can be produced by
 - Recombination of H⁺
 - Impact excitation of H⁰
- \blacklozenge H I absorption can only be produced by H^0
- H I is not the same as H⁰
- Ambiguous for emission lines

Baryons and spectra

- Hazy 1 Section 2.5
- SpeciesLabels.txt in docs
- Molecules are not ambiguous
 - H2
 - CO - O2
 - H2+
 - C2+
 - Their spectra have the same notation as the baryon

Baryons and spectra

- Atomic spectra use number of spectra
 H 1. C 4
- The baryon
 - "H", "He+", "C+2" (C2+ is C₂⁺ in our notation)
- 2.5 "Species", how we specify atoms, ions, and molecules, and their spectra

2.5.1 Overview

CLOUDY simulates gas ranging from fully ionized to molecular. Nomenclature varies considerably between chemical, atomic, and plasma physics. We adopted a nomenclature that tries to find a middle ground between these different fields.

We refer to a particular atom, ion, or molecule as a "species". A species is a baryon. Examples are CO, H_2 , H^+ , and Fe²²⁺. Species are treated using a common approach, as much as possible.

Lines in the main output

- Print lines column
- Print lines sort wavelength
- Print lines faint

Finding lines in Cloudy

- A line is identified by a spectral label & wavelength
- docs/LineLabels.txt has label, wavelength, comment about line

 Generated with command "Save line labels"
- Pick lines from this file

Air vs vacuum wavelengths

- The rule in atomic physics has been to use vacuum wavelengths for λ < 2000Å and air for λ > 2000Å
- SDSS has used vacuum for all wavelengths
- Today's papers use a mix of both
- Vacuum is probably the future
- Print line vacuum
 - -But you need to change your wavelengths

Species	λ(air)	λ(vacuum)
H 1	1215.67A	1215.67A
O 2	3726.03A	3727.09A
O 2	3728.81A	3729.88A
O. 3	4363.21A	4364.44A
H 1	4861.33A	4862.69A
O 3	5006.84A	5008.24A
H. 1	6562.81A	6564.62A

Other database reporting options

See C17 review article, section 2
Database print

Luminosity, relative intensity

• Intensity or luminosity of line

- depending on case
- Intensity relative to normalization line, default Hβ

- Change with	0	3 88.3323m	-5.577	1.5126
normalize	0	3 51.8004m	-5.106	4.4704
command		and the second se		
command	0	3 4931.23A	-8.339	0.0026
	0	3 4958.91A	-4.876	7.5973
	0	3 5006.84A	-4.401	22.6702
	0	3 2320.95A	-7.193	0.0366
	0	3 4363.21A	-6.593	0.1456
	0	3 1660.81A	-7.187	0.0371
	0	3 1666.15A	-6.720	0.1087

Databases in Cloudy Iso-electronic sequences (H and He like) H₂ Stout (atoms & low ionization) Chianti (higher ionization) LAMDA (heavy-element molecules) Database print command Reports all databases in use The number of levels used Species "C+2" levels 40

Ion	Level	$n_e ({\rm cm}^{-3})$	Ion	Level	$n_e ({\rm cm}^{-3})$
C II	${}^{2}P^{o}_{3/2}$	5.0×10^{1}	O III	$^{1}D_{2}$	6.8×10^{5}
CIII	${}^{3}P_{2}^{o}$ ${}^{1}D_{2}$	5.1×10^{5}	OIII	${}^{3}P_{2}$	3.6×10^{3}
NII	$^{1}D_{2}^{-}$	6.6×10^{4}	O III	${}^{3}P_{1}$	5.1×10^{2}
NII	${}^{3}P_{2}$	3.1×10^{2}	Ne II	${}^{2}P^{o}_{1/2}$	7.1×10^{5}
NII	${}^{3}P_{1}$	8.0×10^{1}	Ne III	${}^{1}D_{2}^{1/2}$	9.5×10^{6}
N III	² P ^o _{3/2}	1.5×10^{3}	Ne III	${}^{3}P_{0}$	3.1×10^{4}
NIV	³ P ₂ ^o	1.1×10^{6}	Ne III	${}^{3}P_{1}$	2.1×10^{5}
OII	² D ^o _{3/2}	1.5×10^{4}	Ne V	$^{1}D_{2}$	1.3×10^{7}
OII	${}^{2}D_{5/2}^{o}$	3.4×10^{3}	Ne V	${}^{3}P_{2}$	3.5×10^{4}
SII	2 Do.	5.4×10^{4}	Ne V	${}^{3}P_{1}$	6.2×10^{3}
SII	${}^{2}D^{o}_{5/2}$	1.6×10^4			

Vary density over extreme range

- Plot emissivity vs density over wide range to see how emissivity changes
- Recombination line, [O III] forbidden lines
- varyn.in

Recombination lines

- ◆ $H^+ + e \rightarrow H^{0*} \rightarrow H^0 + photons$
- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL
- Emissivity goes as n² for n < 10²⁰ cm⁻³
- Case B predictions
- + H I, He I, He II are the strongest in UV/ Opt/ IR
- Second row (C,N, O, Ne) & Fe in X-ray

Forbidden lines

- ◆ [O III]
- ◆ \mathbf{O}^{++} + e → \mathbf{O}^{++} + e → \mathbf{O}^{++} + e + photons - $n_e n(O^{++}) q_{ul}$
- Critical densities of many forbidden lines n ~ 1e3 - 1e5 cm⁻³, so they can be in LDL or HDL
- Emissivity goes as n² or n

Radiative recombination edges

- Hrec3, hrec4.in in sims
- Hrec spreadsheet in sims
- Maybe do in x-rays instead? More common application

The ionization parameter

- U, the ratio of ionizing photon to hydrogen densities
- See <u>Davidson & Netzer</u> 1979

2.7 Photoionization of Heavy Elements

Finally, let us examine the ionization of the heavy elements, of which O, C, Ne, N, Si, and Fe, with abundances (by number) of order 10^{-5} to 10^{-4} that of H, are the most abundant. The ionization – quilibrium equation for any two successive stages of ionization 1 and 1 + 1 of any element X may be written

$$\begin{split} &\kappa(X^{+i})\int_{\eta}^{\infty}\frac{4\pi J_{s}}{h\nu}a_{s}(X^{+i})d\nu = \kappa(X^{+i})\Gamma(X^{+i}) \\ &= \kappa(X^{+i+3})\kappa_{s}\alpha_{G}(X^{+i},T), \end{split}$$
(2.30)

where $n(X^{+i})$ and $n(X^{+i+3})$ are the number densities of the two successive stages of ionization; $a_i(X^{i+i})$ is the photoionization cross section from the ground level of X^i

U and T(star) determine ionization

• No matter how intense the radiation field, how large the U, ions with ionization potentials higher than the highest energy in the SED cannot be produced